5. Series representation of Brownian motion. The "derivative of Brownian motion" is called white noise. Formally, take an ONB $\left\{\varphi_{n}\right\}$ of $L^{2}(I)$ and write $W^{\prime}(t)=\sum_{n} X_{n} \varphi_{n}(t)$ where X_{n} are i.i.d $N(0,1)$, and then integrate term-by-term to write the expression $W(t)=\sum_{n} X_{n} \Phi_{n}(t)$ where $\Phi_{n}(t)=\int_{0}^{t} \varphi_{n}(s) d s$. What sense does this make? We start with the series $\sum_{n} X_{n} \Phi_{n}(t)$, and show that it converges (a.s.) in appropriate sense to a continuous function which can then be identified as Brownian motion. The Lévy construction given in the book essentially does this using the Haar basis (see Theorem 1.44 in [MP]).

Wiener himself used the Fourier basis to give a second construction of Brownian motion. The goal is to write $W(t)=\sum_{n=0}^{\infty} X_{n} \frac{\sqrt{2} \sin \pi\left(n+\frac{1}{2}\right) t}{\pi\left(n+\frac{1}{2}\right)}$. The difficulty is in showing that the series converges uniformly (a.s.) to a continuous function.

23 (Preliminary observations). Let $\psi_{n}(t)=\sqrt{2} \sin \pi\left(n+\frac{1}{2}\right) t$. These are orthonormal in $L^{2}(I)$.

1. For any fixed $t \in I$, the series $\sum \frac{X_{n}}{\pi\left(n+\frac{1}{2}\right)} \psi_{n}(t)$ converges almost surely.
2. For any $0 \leq t_{1}<\ldots<t_{n} \leq 1$, the limit random variables $W\left(t_{1}\right), \ldots, W\left(t_{n}\right)$ are jointly normal with covariances $\sum \frac{1}{\pi^{2}\left(n+\frac{1}{2}\right)^{1}} \psi_{n}(t) \psi_{n}(s)$ which is in fact equal to $t \wedge s$ (you do not need to show this last part).

24 (A lemma on trigonometric polynomials). Let $p(t)=\sum_{k=0}^{N-1} c_{k} \psi_{k}(t)$. Then, $\left\|p^{\prime}\right\|_{\text {sup }} \leq 2 \pi N^{2}\|p\|_{\text {sup }}$. In particular, $\int_{0}^{1}\left(e^{2 \lambda p(t)}+e^{-2 \lambda p(t)}\right) d t \geq \frac{1}{2 \pi N^{2}} \exp \left\{\lambda\|p\|_{\text {sup }}\right\}$ for any $\lambda>0$.
25. Let $f(t)=\sum_{k=0}^{N-1} c_{k} X_{k} \psi_{k}(t)$ where X_{k} are i.i.d $N(0,1)$. Compute $\mathbf{E}\left[e^{\lambda f(t)}\right]$ and hence conclude that $\mathbf{P}\left(\|f\|_{\text {sup }}>4 M\|c\|\right) \leq 4 \pi N^{2} \exp \left\{-M^{2}\right\}$ where $\|c\|^{2}=$ $\sum_{k=0}^{N-1} c_{k}^{2}$.
26. Let $f_{k, \ell}(t)=\sum_{n=k}^{\ell-1} \frac{1}{\pi\left(n+\frac{1}{2}\right)} X_{n} \psi_{n}(t)$. Use the previous problem to show that $\sum_{k}\left\|f_{2^{k}, 2^{k+1}}\right\|_{\text {sup }}$ is finite with probability one. Conclude that $W(t):=\sum_{n=0}^{\infty} X_{n} \frac{\sqrt{2} \sin \pi\left(n+\frac{1}{2}\right) t}{\pi\left(n+\frac{1}{2}\right)}$ is standard Brownian motion.

27 (Hölder continuity). For any $0=N_{0}<N_{1}<N_{2}<\ldots$ going to infinity and write $W=g_{0}+g_{1}+\ldots$ where $g_{k}(t)=f_{N_{k}, N_{k+1}}$. Let $\omega(h)=\sup _{|t-s|<h}\left|W_{t}-W_{s}\right|$.

1. For any $h>0, \omega(h) \leq h\left\|g_{0}^{\prime}\right\|_{\text {sup }}+2 \sum_{k=1}^{\infty}\left\|g_{k}\right\|_{\text {sup }}$.
2. Choose N_{k} appropriately to show that $\omega(h) \leq C \sqrt{h \log (1 / h)}$ for some $C>0$ (at least try to get $\omega(h) \leq C h^{\gamma}$ for any $\gamma<1 / 2$).
[^0]
[^0]: By the same steps, one can show that Brownian bridge is represented by the random series $\sum_{n=1}^{\infty} X_{n} \frac{\sqrt{2} \sin (\pi n t)}{\pi n}$.

